Skip to main content

Word2vec : Assignment 3 (Extracurricular)

Submit *both* in person (4:15pm) and in Carmen (10am) by Tuesday December 5th, 2017; strictly no late submission or alternative submission methods will be accepted for this extracurricular assignment.

Due to the time limitation of this 2-credit special topic course, we only got to quickly walk through some basic building blocks of the deep learning in the class. However, you may get a much better understanding by following the provided readings and implementing the algorithms in this assignment:

  • A softmax function and a sigmoid function
  • A simple neural network with back propagation
  • Word2vec models (Skip-gram, CBOW) with negative sampling

You will also apply your implemented Skip-gram model with negative sampling to train semantic word vectors on the Stanford Sentiment Treebank (SST), and visualize them.

You will find this documentation very helpful.


You will use Jupyter Notebook, an interactive Python programming and data visualization tool, for this homework. You can follow this guide to install Anaconda, that conveniently includes Python, the Jupyter Notebook and other commonly used packages for scientific computing and data science. The starter code is tested for Python 3.4 that you are recommended to use.

You can download the homework assignment zip file from Carmen that contains the starter code, some visualization, and explanatory text. Then, open the included *.ipynb file in the Jupyter Notebook and follow all the instructions to do your work there.

To earn bonus points for this assignment, you will need to 1) demo your code in person to the instructor and answer some questions about this assignment during the office hours (4:15-5:15pm) on Tuesday December 5th, 2017; AND 2) pack your *.ipynb file into a zip file named like ‘’ and submit in the OSU’s Carmen system. Since this is an extracurricular activity, strictly no late submission or alternative submission methods will be accepted.