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An Example Prediction Problem: 
Sentence Classification
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A First Try: 
Bag of Words (BOW)
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(CBOW)

I hate this movie

+

bias

=

scores

+ + +

lookup lookup lookuplookup

W

=



Deep CBOW
I hate this movie
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Build It, Break It

There’s nothing I don’t 
love about this movie

very good 
good 
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bad 

very bad

I don’t love this movie
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very bad



Bag of n-grams
I hate this movie
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tanh( 
  W*[x1;x2] 
   +b)

Time Delay Neural Networks 
(Waibel et al. 1989)

I hate this movie

tanh( 
  W*[x2;x3] 
   +b)

tanh( 
  W*[x3;x4] 
   +b)

combine
softmax( 

  W*h + b)

probs

These are soft 2-grams!



Convolutional Networks 
(LeCun et al. 1997)

Parameter extraction performs a 2D sweep, not 1D



CNNs for Text 
(Collobert and Weston 2011)

• 1D convolution ≈ Time Delay Neural Network 

• But often uses terminology/functions borrowed from 
image processing 

• Two main paradigms: 

• Context window modeling: For tagging, etc. get 
the surrounding context before tagging 

• Sentence modeling: Do convolution to extract n-
grams, pooling to combine over whole sentence
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• Convolutional	filter:	 (goes	over	window	of	h	words)
• Note,	filter	is	vector!
• Window	size	h	could	be	2	(as	before)	or	higher,	e.g.	3:
• To	compute	feature	for	CNN	layer:
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Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn , (1)

where � is the concatenation operator. In gen-
eral, let x i :i + j refer to the concatenation of words
x i , x i +1 , . . . , x i + j . A convolution operation in-
volves a filter w 2 Rhk , which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words x i :i + h�1 by

ci = f (w · x i :i + h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h , x2:h+1 , . . . , xn�h+1: n} to produce
a feature map

c = [ c1, c2, . . . , cn�h+1 ], (3)

with c 2 Rn�h+1 . We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
öc = max {c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [öc1, . . . , öcm ] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r ) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that öw = pw , and
öw is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w ||2 = s

whenever ||w ||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Single	layer	CNN:	Pooling	layer

• New	building	block:	Pooling
• In	particular:	max-over-time	pooling	layer
• Idea:	capture	most	important	activation	(maximum	over	time)

• From	feature	map

• Pooled	single	number:

• But	we	want	more	features!

5/12/16Richard	Socher

Figure 1: Model architecture with two channels for an example sentence.
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window of h words to produce a new feature. For
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filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Solution:	Multiple	filters

• Use	multiple	filter	weights	w	

• Useful	to	have	different	window	sizes	h

• Because	of	max	pooling																								,	length	of	c irrelevant

• So	we	can	have	some	filters	that	look	at	unigrams,	bigrams,	tri-
grams,	4-grams,	etc.

5/12/16Richard	Socher

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.
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penultimate layer with a constraint on l2-norms of
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prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
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where � is the element-wise multiplication opera-
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random variables with probability p of being 1.
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w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
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necessary) is represented as

x1:n = x1 ! x2 ! . . . ! xn , (1)

where ! is the concatenation operator. In gen-
eral, letx i :i+j refer to the concatenation of words
x i , x i+1, . . . , x i+j . A convolution operation in-
volves afilter w " Rhk , which is applied to a
window of h words to produce a new feature. For
example, a featureci is generated from a window
of wordsx i :i+h�1 by

ci = f (w · x i :i+h�1 + b). (2)

Hereb " R is a bias term andf is a non-linear
function such as the hyperbolic tangent. This Þlter
is applied to each possible window of words in the
sentence{x1:h, x2:h+1, . . . , xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c " Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular Þlter. The idea is to capture the most im-
portant featureÑone with the highest valueÑfor
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by whichone
feature is extracted fromone Þlter. The model
uses multiple Þlters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ÔchannelsÕ of word vectorsÑone

that is kept static throughout training and one that
is Þne-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in Þg-
ure 1, each Þlter is applied to both channels and
the results are added to calculateci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint onl2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping outÑi.e., setting to zeroÑa pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layerz = [ĉ1, . . . , ĉm ] (note that here we havem
Þlters), instead of using

y = w · z + b (4)

for output unity in forward propagation, dropout
uses

y = w · (z # r ) + b, (5)

where# is the element-wise multiplication opera-
tor andr " Rm is a ÔmaskingÕ vector of Bernoulli
random variables with probabilityp of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled byp such thatˆw = pw, and
ˆw is used (without dropout) to score unseen sen-
tences. We additionally constrainl2-norms of the
weight vectors by rescalingw to have||w ||2 = s
whenever||w ||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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n	words	(possibly	 zero	padded)	 and	each	word	vector	has	k	dimensions
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¥ Idea:	randomly	mask/dropout/set	to	0	some	of	the	feature	
weights	z

¥ Create	masking	vector	r	of	Bernoulli	random	variables	with	
probability	p	(a	hyperparameter)	of	being	1

¥ Delete	features	during	training:

¥ Reasoning:	Prevents	co-adaptation	(overfitting to	seeing	specific	
feature	constellations)
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Tricks	to	make	it	work	better:	Dropout

• At	training	time,	gradients	are	backpropagated only	through	
those	elements	of	z	vector	for	which	ri =	1

• At	test	time,	there	is	no	dropout,	so	feature	vectors	z	are	larger.
• Hence,	we	scale	final	vector	by	Bernoulli	probability	p	

• Kim	(2014)	reports	2	– 4%	improved	accuracy	and	ability	to	use	
very	large	networks	without	overfitting

5/12/16Richard	Socher



All	hyperparameters in	Kim	(2014)

• Find	hyperparameters based	on	dev set
• Nonlinearity:	reLu
• Window	filter	sizes	h	=	3,4,5
• Each	filter	size	has	100	feature	maps
• Dropout	p	=	0.5
• L2	constraint	s	for	rows	of	softmax s	=	3
• Mini	batch	size	for	SGD	training:	50
• Word	vectors:	pre-trained	with	word2vec,	k	=	300

• During	training,	keep	checking	performance	on	dev set	and	pick	
highest	accuracy	weights	for	final	evaluation

5/12/16Richard	Socher



A Case Study



Overcoming	Language	Varia0on	in		
Sen0ment	Analysis	with	Social	A9en0on

Work	performed	at	Georgia	Tech	with	Jacob	Eisenstein.

Yi	Yang	
Bloomberg	LP



Language	varia0on	in	sen0ment	analysis
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Personalized	sen0ment	analysis

‣ 	Goal:	personalized	condi0onal	likelihood,																			.
‣ 					is	the	text,	and						is	the	author.

p(y|x, a)

x

a

- -+ +
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Personalized	sen0ment	analysis

‣ 	Goal:	personalized	condi0onal	likelihood,																			.

‣ 	Problem:	we	have	labeled	examples	for	only	a	few	authors.

‣ 					is	the	text,	and						is	the	author.
p(y|x, a)

x

a

- -+ +
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Homophily	to	the	rescue?

Homophily:	neighbors	have	similar	proper0es.

Thelwall	(2009);	AI	Zamal	et	al.	(2012)
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Homophily	to	the	rescue?

Homophily:	neighbors	have	similar	proper0es.

Thelwall	(2009);	AI	Zamal	et	al.	(2012)



6

Evidence	for	linguis0c	homophily

!"#$%&'%()*:	is	classifier	accuracy	assorta0ve	on	the	Twi9er	
social	network?
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Evidence	for	linguis0c	homophily

!"#$%&'(&"$)&)*+:	degree-preserving	randomiza0on	
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Evidence	for	linguis0c	homophily

Network	rewiring:	degree-preserving	randomiza0on	
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Evidence	for	linguis0c	homophily

Network	rewiring:	degree-preserving	randomiza0on	
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Model
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Pr(Za = k|a,G)
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Personaliza0on	by	ensemble
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p(y|x, a) =
KX

k=1

Pr(Za = k|a,G)| {z }
ensemble weights

⇥ p(y|x, Za = k)| {z }
basis models

‣ 	Train	each	basis	model	with	all	the	labeled	data.

‣ 	Employ	ConvNets	as	basis	models.



Personaliza0on	by	ensemble

9

p(y|x, a) =
KX

k=1

Pr(Za = k|a,G)| {z }
ensemble weights

! p(y|x, Za = k)| {z }
basis models

‣ 	Train	each	basis	model	with	all	the	labeled	data.

‣ 	Apply	linguis0c	homophily:

‣ 	Employ	ConvNets	as	basis	models.

‣ 	Adopt	similar	ensemble	weights	for	social	neighbors.

‣ 	De-correlate	errors	made	by	different	basis	models.



Network-driven	personaliza0on
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‣ 	For	each	author,	es0mate	a	node	
embedding								(Tang	et	al.,	2015).va

‣ 	Nodes	who	share	neighbors	get	
similar	embeddings.



Network-driven	personaliza0on

10

‣ 	For	each	author,	es0mate	a	node	
embedding								(Tang	et	al.,	2015).va

‣ 	Nodes	who	share	neighbors	get	
similar	embeddings.

‣ 	Social	a;en<on:
Pr(Za = k|a,G) = SoftMax(f(va))



Learning
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‣ 	Jointly	train	with	cross-entropy	loss:



Learning
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‣ 	Jointly	train	with	cross-entropy	loss:

Problem:	network	informa0on	tends	to	be	ignored.	



Learning

11

‣ 	Pre-train	basis	models	with	instance-weighted	losses:

‣ 	Jointly	train	with	cross-entropy	loss:

Problem:	network	informa0on	tends	to	be	ignored.	
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Results:	SemEval	Twi9er	data
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Variable	sen0ment	words
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Results:	Ciao	review	data
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Results:	Ciao	review	data
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Conclusions	and	future	work

‣ 	Linguis0c	homopily	alleviates	the	data	sparsity	issue	for	
es0ma0ng	personalized	models.

‣ 	Social	a9en0on	mechanism	significantly	improves	accuracy.

‣ 	Language	varia0on	poses	challenges	in	sen0ment	analysis.

21

‣ 	The	socially-infused	ensemble	architecture	can	be	applied	
to	other	tasks	such	as	tagging,	parsing,	etc.	
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www.cis.upenn.edu/~xwe/  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