Social Media & Text Analysis
lecture 5 - Paraphrase Identification and Logistic Regression

CSE 5539-0010 Ohio State University
Instructor: Wei Xu
Website: socialmedia-class.org
In-class Presentation

• pick your topic and sign up

• a 10 minute presentation (20 points)
 - A Social Media Platform
 - Or a NLP Researcher
Identifying Products in Online Cybercrime Marketplaces: A Dataset for Fine-grained Domain Adaptation

Greg Durrett
UT Austin
gdurrett@cs.utexas.edu

Jonathan K. Kummerfeld
University of Michigan
jkummerf@umich.edu

Taylor Berg-Kirkpatrick
Carnegie Mellon University
tberg@cs.cmu.edu

Rebecca S. Portnoff
UC Berkeley
rsportnoff@cs.berkeley.edu

Sadia Afroz
ICSI, UC Berkeley
sadia@icsi.berkeley.edu

Damon McCoy
NYU
mccoy@nyu.edu

Kirill Levchenko
UC San Diego
klevchen@cs.ucsd.edu

Vern Paxson
ICSI, UC Berkeley
vern@berkeley.edu

Abstract

One weakness of machine-learned NLP models is that they typically perform poorly on out-of-domain data. In this work, we study the task of identifying products being bought and sold in online cybercrime forums, which exhibits particularly challenging cross-domain effects. We formulate a task that represents a hybrid of slot-filling information extraction and named entity recognition and annotate data from four different forums. Each of these forums constitutes its own “fine-grained domain” in that the forums

(a) File 0-initiator4856

TITLE: [buy] Backconnect bot
BODY: Looking for a solid backconnect bot .
 If you know of anyone who codes them please let me know

(b) File 0-initiator10815

TITLE: Exploit cleaning ?
BODY: Have some Exploits i need fud .

Figure 1: Example posts and annotations from Darkode, with annotated product tokens underlined. The second example exhibits jargon (fud means “fully undetectable”), nouns that could be a product in other contexts (Exploit), and multiple lexically-distinct descriptions of a single service.
Mini Research Proposal

• propose/explore NLP problems in GitHub dataset

https://github.com
Mini Research Proposal

• propose/explore NLP problems in GitHub dataset

• GitHub:
 - a social network for programmers (sharing, collaboration, bug tracking, etc.)
 - hosting Git repositories (a version control system that tracks changes to files, usually source code)
 - containing potentially interesting text fields in natural language (comments, issues, etc.)
(Recap)

what is Paraphrase?

“sentences or phrases that convey approximately the same meaning using different words” — (Bhagat & Hovy, 2012)
what is Paraphrase?

“sentences or phrases that convey approximately the same meaning using different words” — (Bhagat & Hovy, 2012)
what is **Paraphrase**?

“sentences or phrases that convey approximately the same meaning using different words” — (Bhagat & Hovy, 2012)
what is **Paraphrase**?

“sentences or phrases that convey approximately the same meaning using different words” — (Bhagat & Hovy, 2012)

- **wealthy**
- **word**
- **rich**

- **the king’s speech**
- **phrase**
- **His Majesty’s address**

- … the forced resignation of the CEO of Boeing, Harry Stonecipher, for …
- **sentence**
- … after Boeing Co. Chief Executive Harry Stonecipher was ousted from …
The Ideal

You've suffered a contusion to the soft tissue below the fourth thoracic vertebra, exacerbating the proximal sternum.

Translation: "You have a bruised rib."
(Recap)

Paraphrase Research

80s WordNet

‘01 Web ‘01 Novels

‘04 News

‘05 ‘13 Bi-Text

‘11 Video

‘12* Style

‘13* ‘14* Twitter

‘15* ‘16* Simple

Xu
Ritter
Dolan
Grishman
Cherry

Xu
Callison-Burch
Napoles

* my research

DIRT
(Discovery of Inference Rules from Text)
Lin and Panel (2001) operationalize the Distributional Hypothesis using **dependency relationships** to define similar environments.

Duty and **responsibility** share a similar set of dependency contexts in large volumes of text:

<table>
<thead>
<tr>
<th>modified by adjectives</th>
<th>objects of verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>additional, administrative,</td>
<td>assert, assign, assume,</td>
</tr>
<tr>
<td>assigned, assumed, collective,</td>
<td>attend to, avoid, become,</td>
</tr>
<tr>
<td>congressional, constitutional</td>
<td>breach ...</td>
</tr>
</tbody>
</table>

Decking Lin and Patrick Pantel. “DIRT - Discovery of Inference Rules from Text” In KDD (2001)
Bilingual Pivoting

... 5 farmers were thrown into jail in Ireland ...

... fünf Landwirte festgenommen, weil ...
… fünf Landwirte, weil …

… 5 farmers were … thrown into jail in Ireland …

festgenommen, weil …

Source: Chris Callison-Burch
... 5 farmers were thrown into jail in Ireland ...

... fünf Landwirte festgenommen, weil ...

... oder wurden festgenommen, gefoltert ...

... or have been imprisoned, tortured ...
... 5 farmers were thrown into jail in Ireland ...

... fünf Landwirte festgenommen, weil ...

... oder wurden festgenommen, gefoltert ...

... or have been imprisoned, tortured ...
... 5 farmers were thrown into jail in Ireland ...

... fünf Landwirte festgenommen, weil ...

... oder wurden festgenommen, gefoltert ...

... or have been imprisoned, tortured ...
Quiz #2

Key Limitations of PPDB?
Quiz #2

word sense

- **bug**
 - microbe, virus, bacterium, germ, parasite
 - bother, annoy, pester
 - glitch, error, malfunction, fault, failure

- **insect, beetle, pest, mosquito, fly**
 - microphone, tracker, mic, wire, earpiece, cookie
 - squealer, snitch, rat, mole

Source: Chris Callison-Burch
Another Key Limitation

only paraphrases, no non-paraphrases

Paraphrase Identification

obtain sentential paraphrases automatically

Mancini has been sacked by Manchester City
Mancini gets the boot from Man City

WORLD OF JENKS IS ON AT 11
World of Jenks is my favorite show on tv

(meaningful) non-paraphrases are needed to train classifiers!

Wei Xu, Alan Ritter, Chris Callison-Burch, Bill Dolan, Yangfeng Ji. “Extracting Lexically Divergent Paraphrases from Twitter” In TACL (2014)
(meaningful) non-paraphrases are needed to train classifiers!

* my research

News Paraphrase Corpus

Microsoft Research Paraphrase Corpus

also contains some non-paraphrases

(Dolan, Quirk and Brockett, 2004; Dolan and Brockett, 2005; Brockett and Dolan, 2005)
Twitter Paraphrase Corpus

Rep. Stacey Newman @staceynewman · 5h
So sad to hear today of former WH Press Sec James Brady's passing. @bradybuzz & family will carry on his legacy of #gunsense.

Jim Sciutto @jimsciutto · 4h
Breaking: Fmr. WH Press Sec. James Brady has died at 73, crusader for gun control after wounded in '81 Reagan assassination attempt

NBC News @NBCNews · 2h
James Brady, President Reagan's press secretary shot in 1981 assassination attempt, dead at 73 nbcnews.to/WX1Btq pic.twitter.com/1ZtuEakRd9

also contains a lot of non-paraphrases

Wei Xu, Alan Ritter, Chris Callison-Burch, Bill Dolan, Yangfeng Ji. “Extracting Lexically Divergent Paraphrases from Twitter” In TACL (2014)
Paraphrase Identification: A Binary Classification Problem

- **Input:**
 - a sentence pair x
 - a fixed set of binary classes $Y = \{0, 1\}$

- **Output:**
 - a predicted class $y \in Y$ ($y = 0$ or $y = 1$)
Paraphrase Identification: A Binary Classification Problem

• Input:
 - a sentence pair x
 - a fixed set of binary classes $Y = \{0, 1\}$

• Output:
 - a predicted class $y \in Y$ ($y = 0$ or $y = 1$)
Paraphrase Identification:

A Binary Classification Problem

• Input:
 - a sentence pair \(x \)
 - a fixed set of binary classes \(Y = \{0, 1\} \)

 negative (non-paraphrases)
 positive (paraphrases)

• Output:
 - a predicted class \(y \in Y \) (\(y = 0 \) or \(y = 1 \))
Paraphrase Identification:

A Binary Classification Problem

• Input:
 - a sentence pair \(x \)
 - a fixed set of binary classes \(Y = \{0, 1\} \)

• Output:
 - a predicted class \(y \in Y \) (\(y = 0 \) or \(y = 1 \))
Classification Method:

Supervised Machine Learning

- **Input:**
 - a sentence pair \(x \)
 - a fixed set of binary classes \(Y = \{0, 1\} \)
 - a training set of \(m \) hand-labeled sentence pairs
 \((x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})\)

- **Output:**
 - a learned classifier \(\gamma: x \rightarrow y \in Y \) (\(y = 0 \) or \(y = 1 \))
Classification Method:

Supervised Machine Learning

- **Input:**
 - a sentence pair \(x \) *(represented by features)*
 - a fixed set of binary classes \(Y = \{0, 1\} \)
 - a training set of \(m \) hand-labeled sentence pairs \((x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \)

- **Output:**
 - a learned classifier \(\gamma: x \rightarrow y \in Y \) *(\(y = 0 \) or \(y = 1 \))*
(Recap Week #3) Classification Method: Supervised Machine Learning

- Naïve Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- …
Naïve Bayes

Cons:

features t_i are assumed independent given the class y

$$P(t_1, t_2, ..., t_n | y) = P(t_1 | y) \cdot P(t_2 | y) \cdot ... \cdot P(t_n | y)$$

This will cause problems:

- correlated features \rightarrow double-counted evidence
- while parameters are estimated independently
- hurt classifier’s accuracy
Classification Method:
Supervised Machine Learning

- Naïve Bayes
- **Logistic Regression**
- Support Vector Machines (SVM)
- …
Logistic Regression

• One of the most useful **supervised machine learning algorithm** for classification!

• Generally high performance for a lot of problems.

• Much more robust than Naïve Bayes (better performance on various datasets).
Before Logistic Regression

Let’s start with something simpler!
Paraphrase Identification:

Simplified Features

• We use only one feature:
 - number of words that two sentence shared in common
A very related problem of Paraphrase Identification: Semantic Textual Similarity

- How similar (close in meaning) two sentences are?

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>completely equivalent in meaning</td>
</tr>
<tr>
<td>4</td>
<td>mostly equivalent, but some unimportant details differ</td>
</tr>
<tr>
<td>3</td>
<td>roughly equivalent, some important information differs/missing</td>
</tr>
<tr>
<td>2</td>
<td>not equivalent, but share some details</td>
</tr>
<tr>
<td>1</td>
<td>not equivalent, but are on the same topic</td>
</tr>
<tr>
<td>0</td>
<td>completely dissimilar</td>
</tr>
</tbody>
</table>
A Simpler Model:

Linear Regression

Sentence Similarity (rated by Human) vs. #words in common (feature)
A Simpler Model: Linear Regression

- also supervised learning (learn from annotated data)
- but for **Regression**: predict **real-valued** output
 (Classification: predict discrete-valued output)
A Simpler Model:

Linear Regression

- also supervised learning (learn from annotated data)

- but for **Regression**: predict **real-valued** output
 (Classification: predict discrete-valued output)
A Simpler Model:

Linear Regression

- also supervised learning (learn from annotated data)
- but for **Regression**: predict real-valued output
 (Classification: predict discrete-valued output)
A Simpler Model: Linear Regression

- also supervised learning (learn from annotated data)
- but for **Regression**: predict **real-valued** output
 (Classification: predict discrete-valued output)
Training Set

<table>
<thead>
<tr>
<th>#words in common ((x))</th>
<th>Sentence Similarity ((y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- \(m \) hand-labeled sentence pairs \((x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \)
- \(x \)'s: “input” variable / features
- \(y \)'s: “output”/“target” variable
Supervised Machine Learning

training set

(a) Training

input

label

feature extractor

features

machine learning algorithm

(b) Prediction

input

feature extractor

features

classifier model

label

Source: NLTK Book
Supervised Machine Learning

(a) Training
- Input
- Label
- Feature extractor
- Features
- Machine learning algorithm

(b) Prediction
- Input
- Feature extractor
- Features
- Classifier model
- Label

training set
(also called) hypothesis
Supervised Machine Learning

Training set

(a) Training
- label
- input
- feature extractor
- features
- machine learning algorithm

(b) Prediction
- input
- feature extractor
- features
- classifier model
- label

#words in common

(Also called) hypothesis

Sentence Similarity
Supervised Machine Learning

training set

(a) Training

input

label

feature extractor

features

machine learning algorithm

(b) Prediction

input

feature extractor

features

#words in common

Sentence Similarity

(x) (estimated) y

(estimated)

Sentence Similarity

(also called) hypothesis

(estimated) y

(estimated)
Linear Regression: Model Representation

- How to represent h?

$$h_\theta(x) = \theta_0 + \theta_1 x$$

Linear Regression w/ one variable

Wei Xu • socialmedia-class.org
Linear Regression w/ one variable:

Model Representation

<table>
<thead>
<tr>
<th>#words in common (x)</th>
<th>Sentence Similarity (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- \(m \) hand-labeled sentence pairs \((x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})\)

\[h_\theta(x) = \theta_0 + \theta_1 x \]

\(\theta\)'s: parameters

Source: many following slides are adapted from Andrew Ng
Linear Regression w/ one variable:

Model Representation

<table>
<thead>
<tr>
<th>#words in common (x)</th>
<th>Sentence Similarity (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- m hand-labeled sentence pairs $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$
- θ's: parameters

$h_\theta(x) = \theta_0 + \theta_1 x$
Linear Regression w/ one variable::

Model Representation

\[h_\theta(x) = \theta_0 + \theta_1 x \]

\[\theta_0 = 1.5 \]
\[\theta_1 = 0 \]

\[\theta_0 = 0 \]
\[\theta_1 = 0.5 \]

\[\theta_0 = 1 \]
\[\theta_1 = 0.5 \]
Linear Regression w/ one variable:

Cost Function

Idea: choose θ_0, θ_1 so that $h_\theta(x)$ is close to y for training examples (x, y)
Linear Regression w/ one variable:

Cost Function

- **Idea:** choose θ_0, θ_1 so that $h_\theta(x)$ is close to y for training examples (x, y)
Linear Regression w/ one variable:

Cost Function

\[J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \]

Idea: choose \(\theta_0, \theta_1 \) so that \(h_\theta(x) \) is close to \(y \) for training examples \((x, y) \) minimize \(J(\theta_0, \theta_1) \)
Linear Regression

- **Hypothesis:**
 \[h_\theta(x) = \theta_0 + \theta_1 x \]

- **Parameters:**
 \(\theta_0, \theta_1 \)

- **Cost Function:**
 \[J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \]

- **Goal:** minimize \(J(\theta_0, \theta_1) \)
Linear Regression

- **Hypothesis:**
 \[h_\theta(x) = \theta_0 + \theta_1 x \]

- **Parameters:**
 \(\theta_0, \theta_1 \)

- **Cost Function:**
 \[
 J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2
 \]

- **Goal:** minimize \(J(\theta_0, \theta_1) \)

Simplified

- **Hypothesis:**
 \[h_\theta(x) = \theta_1 x \]

- **Parameters:**
 \(\theta_1 \)

- **Cost Function:**
 \[
 J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2
 \]

- **Goal:** minimize \(J(\theta_1) \)
\[h_\theta(x) \]

(for fixed \(\theta_1 \), this is a function of \(x \))

\[J(\theta_1) \]

(function of the parameter \(\theta_1 \))

\[
J(1) = \frac{1}{2 \times 3} \left[(1 - 1)^2 + (2 - 2)^2 + (3 - 3)^2 \right] = 0
\]
\[h_\theta(x) \]

(for fixed \(\theta_1 \), this is a function of \(x \))

\[J(\theta_1) \]

(function of the parameter \(\theta_1 \))

\[
J(1) = \frac{1}{2 \times 3} [(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2] = 0.68
\]
$h_\theta(x)$

(for fixed θ_1, this is a function of x)

$J(\theta_1)$

(function of the parameter θ_1)

minimize $J(\theta_1)$
$h_\theta(x)$
(for fixed θ_0, θ_1, this is a function of x)

$J(\theta_0, \theta_1)$
(function of the parameter θ_0, θ_1)
Linear Regression

- **Hypothesis:**
 \[h_\theta(x) = \theta_0 + \theta_1 x \]

- **Parameters:**
 \[\theta_0, \theta_1 \]

- **Cost Function:**
 \[J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \]

- **Goal:**
 minimize \(J(\theta_0, \theta_1) \)

Simplified

- **Hypothesis:**
 \[h_\theta(x) = \theta_1 x \]

- **Parameters:**
 \[\theta_1 \]

- **Cost Function:**
 \[J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \]

- **Goal:**
 minimize \(J(\theta_1) \)
\(h_\theta(x) \)
(for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\(J(\theta_0, \theta_1) \)
(function of the parameter \(\theta_0, \theta_1 \))

contour plot
$h_\theta(x)$

(for fixed θ_0, θ_1, this is a function of x)

$J(\theta_0, \theta_1)$

(function of the parameter θ_0, θ_1)
\(h_\theta(x) \)
(for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\(J(\theta_0, \theta_1) \)
(function of the parameter \(\theta_0, \theta_1 \))
Parameter Learning

• Have some function \(J(\theta_0, \theta_1) \)

• Want \(\min_{\theta_0, \theta_1} J(\theta_0, \theta_1) \)

• Outline:
 - Start with some \(\theta_0, \theta_1 \)
 - Keep changing \(\theta_0, \theta_1 \) to reduce \(J(\theta_1, \theta_2) \) until we hopefully end up at a minimum
Gradient Descent

\[J(\theta_1) \]

\[\text{minimize } J(\theta_1) \]
Gradient Descent

\[\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1) \]

\[\text{learning rate} \]

minimize \(J(\theta_1) \)
Gradient Descent

minimize $J(\theta_0, \theta_1)$
Gradient Descent

\[J(\theta_0, \theta_1) \]

\[\text{minimize} \ J(\theta_0, \theta_1) \]
Gradient Descent

repeat until convergence {

\[\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \]

(simultaneous update for j=0 and j=1)

learning rate
Linear Regression w/ one variable:

Gradient Descent

\[h_\theta(x) = \theta_0 + \theta_1 x \]

Cost Function

\[J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \]

\[\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = ? \]

\[\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = ? \]
Linear Regression w/ one variable:

Gradient Descent

repeat until convergence {

\[\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \]

\[\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x^{(i)} \]

simultaneous update \(\theta_0, \theta_1 \)
Linear Regression

$J(\theta_1, \theta_2)$

cost function is convex
\(h_\theta(x) \)

(for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\(J(\theta_0, \theta_1) \)

(function of the parameter \(\theta_0, \theta_1 \))
\(h_\theta(x) \)
(for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\(J(\theta_0, \theta_1) \)
(function of the parameter \(\theta_0, \theta_1 \))
\(h_\theta(x) \)

(for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\(J(\theta_0, \theta_1) \)

(function of the parameter \(\theta_0, \theta_1 \))
\[h_\theta(x) \]
(for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\[J(\theta_0, \theta_1) \]
(function of the parameter \(\theta_0, \theta_1 \))
$$h_\theta(x)$$
(for fixed θ_0, θ_1, this is a function of x)

$$J(\theta_0, \theta_1)$$
(function of the parameter θ_0, θ_1)

Graphs:
- **Left:** Price ($) in (1000s) vs. Size (feet²).
 - Red crosses: Training data.
 - Blue line: Current hypothesis.
- **Right:** Contour plot of the cost function $J(\theta_0, \theta_1)$.
 - Contours represent different values of the cost function.
 - Crosses indicate the parameters where $J(\theta_0, \theta_1)$ is minimized.
\(h_\theta(x) \) (for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\(J(\theta_0, \theta_1) \) (function of the parameter \(\theta_0, \theta_1 \))
$h_\theta(x)$
(for fixed θ_0, θ_1, this is a function of x)

$J(\theta_0, \theta_1)$
(function of the parameter θ_0, θ_1)
\(h_\theta(x) \)

(for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\(J(\theta_0, \theta_1) \)

(function of the parameter \(\theta_0, \theta_1 \))
\(h_\theta(x) \)

(for fixed \(\theta_0, \theta_1 \), this is a function of \(x \))

\(J(\theta_0, \theta_1) \)

(function of the parameter \(\theta_0, \theta_1 \))
Batch Update

• Each step of gradient descent uses all the training examples
(Recap)

Linear Regression

- also supervised learning (learn from annotated data)
- but for **Regression**: predict **real-valued** output
 (Classification: predict discrete-valued output)
(Recap)

Linear Regression

- also supervised learning (learn from annotated data)
- but for **Regression**: predict **real-valued** output (Classification: predict discrete-valued output)

```
paraphrase
```

Sentence Similarity

#words in common (feature)

threshold ➞ Classification
(Recap)

Linear Regression

- also supervised learning (learn from annotated data)
- but for **Regression**: predict **real-valued** output

(Classification: predict discrete-valued output)
(Recap)

Linear Regression

- **Hypothesis:**
 \[h_\theta(x) = \theta_0 + \theta_1 x \]

- **Parameters:**
 \(\theta_0, \theta_1 \)

- **Cost Function:**
 \[J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2 \]

- **Goal:** minimize \(J(\theta_0, \theta_1) \)
(Recap)

Gradient Descent

repeat until convergence

\[
\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)
\]

(simultaneous update for j=0 and j=1)

learning rate
Next Class:

- Logistic Regression (cont’)

socialmedia-class.org