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An Example Prediction Problem: 
Sentence Classification
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A First Try: 
Bag of Words (BOW)

I hate this movie

lookup lookup lookup lookup
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Continuous Bag of Words 
(CBOW)

I hate this movie
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Deep CBOW
I hate this movie

+

bias
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scores
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tanh( 
  W1*h + b1)

tanh( 
  W2*h + b2)
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Build It, Break It

There’s nothing I don’t 
love about this movie

very good 
good 

neutral 
bad 

very bad

I don’t love this movie
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very bad
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Bag of n-grams
I hate this movie

bias

sum(                                                        ) = 

scores

softmax

probs
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tanh( 
  W*[x1;x2] 
   +b)

Time Delay Neural Networks 
(Waibel et al. 1989)

I hate this movie

tanh( 
  W*[x2;x3] 
   +b)

tanh( 
  W*[x3;x4] 
   +b)

combine
softmax( 

  W*h + b)

probs

These are soft 2-grams!
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Convolutional Networks 
(LeCun et al. 1997)

Parameter extraction performs a 2D sweep, not 1D

http://socialmedia-class.org/


    Wei Xu ◦ socialmedia-class.org 

http://socialmedia-class.org/


    Wei Xu ◦ socialmedia-class.org 

CNNs for Text 
(Collobert and Weston 2011)

• 1D convolution ≈ Time Delay Neural Network 

• But often uses terminology/functions borrowed from 
image processing 

• Two main paradigms: 

• Context window modeling: For tagging, etc. get 
the surrounding context before tagging 

• Sentence modeling: Do convolution to extract n-
grams, pooling to combine over whole sentence
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CNNs for Tagging 
(Collobert and Weston 2011)
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CNNs for Sentence Modeling 
(Collobert and Weston 2011)
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Single	layer	CNN

• Convolutional	filter:	 (goes	over	window	of	h	words)
• Note,	filter	is	vector!
• Window	size	h	could	be	2	(as	before)	or	higher,	e.g.	3:
• To	compute	feature	for	CNN	layer:

5/12/16Richard	Socher

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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Single	layer	CNN

• Filter	w	is	applied	to	all	possible	windows	(concatenated	vectors)

• Sentence:

• All	possible	windows	of	length	h:

• Result	is	a	feature	map:	
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ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

the		 country							of							 my		 birth

0.4

0.3

2.3

3.6

4

4.5

7

7

2.1

3.3

1.1 3.5 … 2.4

0

0

0

0

http://socialmedia-class.org/


    Wei Xu ◦ socialmedia-class.org 

Single	layer	CNN:	Pooling	layer

• New	building	block:	Pooling
• In	particular:	max-over-time	pooling	layer
• Idea:	capture	most	important	activation	(maximum	over	time)

• From	feature	map

• Pooled	single	number:

• But	we	want	more	features!
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the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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`
Solution:	Multiple	filters

• Use	multiple	filter	weights	w	

• Useful	to	have	different	window	sizes	h

• Because	of	max	pooling																								,	length	of	c irrelevant

• So	we	can	have	some	filters	that	look	at	unigrams,	bigrams,	tri-
grams,	4-grams,	etc.

5/12/16Richard	Socher

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.
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ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
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Figure	from	Kim	(2014)

wait 
for 
the 

video 
and 
do 
n't 

rent 
it 

n x k representation of 
sentence with static and 

non-static channels 

Convolutional layer with 
multiple filter widths and 

feature maps 

Max-over-time 
pooling 

Fully connected layer 
with dropout and  
softmax output 

Figure 1: Model architecture with two channels for an example sentence.
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Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
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c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
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We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
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n	words	(possibly	 zero	padded)	 and	each	word	vector	has	k	dimensions
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Tricks	to	make	it	work	better:	Dropout

• Idea:	randomly	mask/dropout/set	to	0	some	of	the	feature	
weights	z

• Create	masking	vector	r	of	Bernoulli	random	variables	with	
probability	p	(a	hyperparameter)	of	being	1

• Delete	features	during	training:

• Reasoning:	Prevents	co-adaptation	(overfitting to	seeing	specific	
feature	constellations)

5/12/16Richard	Socher
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Tricks	to	make	it	work	better:	Dropout

• At	training	time,	gradients	are	backpropagated only	through	
those	elements	of	z	vector	for	which	ri =	1

• At	test	time,	there	is	no	dropout,	so	feature	vectors	z	are	larger.
• Hence,	we	scale	final	vector	by	Bernoulli	probability	p	

• Kim	(2014)	reports	2	– 4%	improved	accuracy	and	ability	to	use	
very	large	networks	without	overfitting

5/12/16Richard	Socher
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All	hyperparameters in	Kim	(2014)

• Find	hyperparameters based	on	dev set
• Nonlinearity:	reLu
• Window	filter	sizes	h	=	3,4,5
• Each	filter	size	has	100	feature	maps
• Dropout	p	=	0.5
• L2	constraint	s	for	rows	of	softmax s	=	3
• Mini	batch	size	for	SGD	training:	50
• Word	vectors:	pre-trained	with	word2vec,	k	=	300

• During	training,	keep	checking	performance	on	dev set	and	pick	
highest	accuracy	weights	for	final	evaluation

5/12/16Richard	Socher
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A Case Study
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Automatic Paraphrase Collection 
and Identification in Twitter

Wuwei Lan, Siyu Qiu, Hua He, Wei Xu



What is paraphrase?

famous

Willy Wonka was famous for 
his delicious candy. Children 
and adults loved to eat it.

Willy Wonka was known throughout 
the world because people enjoyed 

eating the tasty candy he made.

known throughout the world

delicious tasty

loved to eat enjoyed eating



Paraphrase Application

[duplicate]

[duplicate]



Paraphrase Application

[Question] [Supporting Evidence]

In May 1898 Portugal celebrated the 400th  
anniversary of this explorer’s arrival in India

On the 27th of May 1498, Vasco da  
Gama landed in Kappad Beach

Location Match

celebrated

Portugal400th anniversaryMay 1898

arrival in

India

explorer

landed in

27th May 1498

Kappad Beach

Date Match

Paraphrase



Paraphrases?

https://www.nytimes.com/2016/10/13/
world/asia/thailand-king.html

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html
https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html


Paraphrases?

https://www.nytimes.com/2016/10/13/
world/asia/thailand-king.html

Paraphrase

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html
https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html


Paraphrases?

https://www.nytimes.com/2016/10/13/
world/asia/thailand-king.html

Paraphrase

Non-Paraphrase

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html
https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html


Paraphrases? We can get many in Twitter

https://www.nytimes.com/2016/10/13/
world/asia/thailand-king.html

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html
https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html


Paraphrases? We can get many in Twitter

https://www.nytimes.com/2016/10/13/
world/asia/thailand-king.html

same URL 

https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html
https://www.nytimes.com/2016/10/13/world/asia/thailand-king.html


Only exist two sentential paraphrase corpora
(which contain meaningful non-paraphrases)

[MSRP[1]]

clustered  
news articles 

needed a SVM classifier to select sentences  
before data annotation

Key for success:
• narrow the search space  
• ensure diversity among sentences 
Also Pitfalls …

needed human-in-the-loop to
avoid “bad” topics

[1] Dolan et al., 2004 
[2] Xu et al., 2014

[PIT-2015[2]]

Twitter 
trending topics
14,035 annotated pairs5,801 annotated pairs



Only exist two sentential paraphrase corpora
(which contain meaningful non-paraphrases)
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clustered  
news articles 

needed a SVM classifier to select sentences  
before data annotation

Key for success:
• narrow the search space  
• ensure diversity among sentences 
Also Pitfalls …
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[PIT-2015[2]]
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Only exist two sentential paraphrase corpora
(which contain meaningful non-paraphrases)

[MSRP[1]]

clustered  
news articles 

needed a SVM classifier to select sentences  
before data annotation

needed human-in-the-loop to
avoid “bad” topics

Key for success:
• narrow the search space  
• ensure diversity among sentences 
Also Pitfalls: cause over-identification when applied to unlabeled data

[1] Dolan et al., 2004 
[2] Xu et al., 2014

[PIT-2015[2]]

Twitter 
trending topics
14,035 annotated pairs5,801 annotated pairs



[MSRP[1]] [PIT-2015[2]]

clustered  
news articles 

Twitter 
trending topics

[Twitter URL Corpus]

no clustering or topic detection needed
no data selection steps needed

Key for success:
• narrow the search space  
• ensure diversity among sentences 
• the simpler the better!

URL-linked  
Tweets

We created the 3rd paraphrase corpora 
(largest annotated corpus to date)

[1] Dolan et al., 2004 
[2] Xu et al., 2014

largest 
up-to-date 14,035 annotated pairs5,801 annotated pairs 51,524 annotated pairs



We created the 3rd paraphrase corpora 
(which also dynamically updates!)

Key for success:
• narrow the search space  
• ensure diversity among sentences 
• the simpler the better! more effective automatic paraphrase identification 

URL-linked  
Tweets

30,000 new sentential paraphrases 
every month

[Twitter URL Corpus][MSRP[1]]

clustered  
news articles 

[1] Dolan et al., 2004 
[2] Xu et al., 2014

[PIT-2015[2]]

Twitter 
trending topics
14,035 annotated pairs5,801 annotated pairs 51,524 annotated pairs



Donald Trump, DJT, Drumpf, Mr Trump, Idiot Trump, Chump, 
Evil Donald, #OrangeHitler, Donald @realTrump, D*nald 
Tr*mp, Comrade #Trump, Crooked #Trump, CryBaby Trump, 
Daffy Trump, Donald KKKrump, Dumb Trump, GOPTrump, 
Incompetent Trump, He-Who-Must-Not-Be-Named, Pres-
elect Trump, President-Elect Trump, President-elect Donald 
J . Trump, PEOTUS Trump, Emperor Trump

Once we have a lot of up-to-date sentential paraphrases
(we can, for example, learn name variations fully automatically)



FBI Director backs CIA finding 
FBI agrees with CIA 
FBI backs CIA view 
FBI finally backs CIA view 
FBI now backs CIA view 
FBI supports CIA assertion 
FBI Clapper back CIA’s view 
The FBI backs the CIA’s assessment 
FBI Backs CIA …

Once we have a lot of up-to-date sentential paraphrases
(we can, of course, learn other synonyms in large quantity via word alignment)



How different from existing paraphrase corpora?

Model Performance Dataset Difference



Automatic Paraphrase Identification

• LEX-OrMF[1] (Orthogonal Matrix Factorization[2])
• DeepPairwiseWord[3] (Deep Neural Networks)
• MultiP[4] (Multiple Instance Learning)

[1] Xu et al., 2014 
[2] Guo et al., 2014
[3] He et al., 2016
[4] Xu et al., 2014



Deep Pairwise Word Model



Deep Pairwise Word Model

Bi-LSTM

Glove

Decompose sentence input into word context to reduce modeling difficulty



Deep Pairwise Word Model



Deep Pairwise Word Model

Multiple vector similarity measurement used to capture word pair relationship



Deep Pairwise Word Model



Deep Pairwise Word Model

More attention added to top ranked word pairs.



Deep Pairwise Word Model



Deep Pairwise Word Model

Sentence pair relationship can be identified by pattern recognition through ConvNet.



Deep Pairwise Word Model

• From Sentence Representation to Word Representation

• From Normal Interaction to Attentive Interaction 

• From Word Representation to Word Pair Interaction

• From Interaction to Pattern Recognition
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System Performance v.s. Human Upper-bound
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Subword Embedding for Paraphrase Identification 

Donald Trump



CNN Based Character Embedding

Embedding Concatenation

Convolution with multiple filters

max pooling

highway network

[1] Kim et al., 2016



CNN Based Subword Embedding



Word Embedding v.s. Subword Embedding
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Wuwei Lan (Ohio State University)
Takeaways

• Simple but effective paraphrase collection method 

• Largest annotated paraphrase corpora to date 

• Continuously growing, providing up-to-date data 

• Subword embedding for paraphrase identification

Xu, Wei



